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The efficiency of a perforated screen as a sound absorber can be greatly increased 
when a rigid surface is placed behind the screen, essentially because the sound can 
then interact many times with the perforations. We consider a practical application 
for a backed perforated screen with a bias flow through the perforations : the ‘screech 
liner’. This is a perforated lining which is inserted in the afterburner section of jet 
engines to suppress the acoustically driven combustion instability commonly known 
as screech. A pressure drop across the screen ensures that a bias flow of cool air is 
produced; this flow protects the liner from the intense heat in the afterburner. 

Our analysis was developed in answer to a clear need for a theory which can predict 
the optimal geometry and bias flow to produce a highly absorptive liner. We show 
that it is theoretically possible to absorb all the sound at a particular frequency. 
Experimental results are presented which show encouraging agreement with the 
theoretical predictions. 

Screech is thought to be the excitation of a transverse resonant oscillation in the jet 
pipe, but the insertion of a liner inevitably changes the frequency of such resonances 
because the boundary condition at the wall is altered. We examine the effect of a liner 
on the resonances which occur in a cylinder and show that a well-designed liner may 
suppress resonances over a range of frequencies. 

The effect of the hot axial jet flow on the performance of a liner has not previously 
received attention. A simple model to account for this flow is included in our analysis. 

1. Introduction 
In this paper we examine a practical application for sound-absorbent perforated 

screens where there is a bias flow through the screen. 
In the 19405, the quest for greater thrust from jet engines led to the introduction 

of afterburners. In these devices, fuel is injected upstream of a flame-stabilizing bluff 
body in the jet pipe. The reheat flame which is produced is a powerful source of 
sound, and it was soon discovered that a variety of acoustically driven combustion 
instabilities occurred. The two most common instabilities are referred to by the 
onomatopoeic terms ‘buzz’ and ‘screech’. Buzz is the excitation of a longitudinal, 
‘organ pipe’ resonance in the jet pipe. This instability has recently been studied in 
detail by Bloxsidge, Dowling & Langhorne (1988). Screech occurs at  higher 
frequencies, when the flame excites a transverse mode of oscillation. Combustion 
instabilities are potentially hazardous, and there have been many attempts at  
suppressing them ; Markstein (1964) reviewed much of the early work in this field. We 
are concerned here with screech only. 

Research workers suspected that by inserting a sound-absorbent lining in the jet 
pipe, near the reheat flame, screeching combustion could be suppressed. The idea was 
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simply that if the sound produced by the flame a t  the screech frequency could be 
absorbed, then the sound level should remain acceptably low. The wall of the jet pipe 
was protected from the intense heat by a heat shield. This cylindrical lining has a 
pressure drop across it,  and supplies cool air to the afterburner through a series of 
cooling rings. Experiments showed that an engine was less inclined to screech when 
additional holes were drilled in the heat shield. The mean pressure drop across the 
liner ensures that there is a bias flow. There is a need for a theory to determine the 
optimal combination of the perforation geometry and the bias flow. 

Crude theoretical models have been developed in which the cylindrical lining was 
modelled as a plane collection of Helmholtz resonators without a bias flow; see, for 
example, Lewis & Garrison (1971). Each component ‘cell’ in such models is assumed 
to act independently, as if there were a honeycomb structure behind the perforated 
screen. In  a real engine a honeycomb structure is impractical. Sound waves a t  
oblique incidence must cause fluid to  travel between the imaginary cells, and so these 
models are unrealistic. 

Leppington & Levine (1973) presented a detailed theory for the reflection of sound 
by a plane rigid screen perforated with a regular array of circular or elliptical 
apertures and backed by a plane rigid wall. However, no mechanism by which sound 
energy could be absorbed was included. Their analysis shows that, unlike the simple 
Helmholtz resonator theory, the resonance frequency depends upon the angle a t  
which sound is incident. For sound at normal incidence the resonance frequency 
coincides with the Helmholtz resonance frequency of an individual cell. 

At typical screech frequencies, the wavelength of the sound is comparable with the 
radius of the jet pipe. The assumption that the lining may be treated as planar may 
therefore be unreliable. Also, the frequency at which screech may occur is commonly 
assumed to be unchanged by the insertion of a screech liner, but, since the boundary 
condition a t  the wall is changed, this is unlikely to be true. 

Theoretical models of the mechanism by which sound energy is absorbed by 
perforates, such as those presented by Blackman (1960), Zinn (1970), Lewis & 
Garrison (1971), Melling (1973) and Cummings (1983, 1984), usually have no mean 
flow through the apertures. Without a mean flow, the absorption mechanism is 
complicated ; above a certain sound level, around 100 dB, nonlinear viscous effects 
predominate (Ingard & Labate 1950). 

The effect of blowing cooling air through a screech liner has received little 
attention. Some experimental work on the effects of a mean flow through the 
apertures in a small plane section of a typical screech liner was reported by Garrison 
et al. (1969). Bechert (1980) noted that a bank of Helmholtz resonators with a bias 
flow through the mouths was first proposed by Barthel (1958), and the idea that 
blowing air through a more elaborate liner could give adjustable absorption 
characteristics was investigated experimentally by Dean & Tester (1975). The 
interaction between sound and a steady low-Mach-number, high-Reynolds-number 
bias flow, such as the flow of cooling air, is of prime importance in determining the 
acoustic properties of perforates. 

A more sophisticated theory is required. I n  this paper we describe work aimed a t  
giving a clearer understanding of the acoustics of the type of perforated linings that 
may be used to  suppress screeching combustion. 

We shall examine the sound absorption properties of backed perforated screens 
with the aim of determining the role of the various parameters. When a plane 
backing plate is sufficiently far from the perforated screen for the local incompressible 
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flow in the mouths of the apertures to be unaffected by its presence, we can model 
the perforated screen as a homogeneous compliant plate. The rigid backing plate 
merely passively reflects the sound that is transmitted through the perforated screen. 
This scheme is also valid for a cylindrical liner under certain conditions which are 
discussed in the main text. We shall also examine the sound field produced by a 
source within a lined duct to see how the radiation from a source is affected by a 
perforated lining. 

In a real jet pipe, there is an axial mean flow of hot gas which is separated from 
the liner by a slow moving layer of cool air. The effect of the hot mean flow on the 
acoustic properties of a sound-absorbent liner has not previously received attention. 
A simple model of this situation is presented in this paper. The cool layer is treated 
as a quiescent fluid except for the mean flow through the apertures. The variation in 
temperature and mean axial velocity is assumed to occur in a layer which is very thin 
in comparison to the wavelength of sound, and we treat the mixing layer as a 
discontinuity which separates the cool layer from the hot flow. 

In $ 2  we develop a relatively general theory of the scattering of sound by a plane 
perforated screen in front of a backing plane. We then examine the absorptive 
properties of this arrangement when the perforations are circular apertures. An 
experiment to test this theory is described in $3. Armed with encouraging agreement 
between theory and experiment we move on to examine the effects of curvature on 
the absorptive properties of a liner in $4, and the sound field produced by a general 
source inside a lined cylinder in $4.1. An elementary extension of the theory to give 
an indication of the effects of a mean flow of hot gas along the duct is developed in 
$4.2. We conclude in $5 that the theory presented in this paper goes some way to 
improving our understanding of the acoustics involved in suppressing screech. We 
hope this work will be of use to design engineers. 

2. The scattering of sound by a perforated screen with an infinite rigid 
backing plane 

An infinite rigid wall occupies the plane x1 = - 1  of a Cartesian coordinate system 
(q, z2, z3). Parallel to this plane, at  2, = 0, there is a thin rigid plate which contains 
a uniform, acoustically homogeneous, array of circular apertures of radius a. A 
steady bias flow of low Mach number and high Reynolds number is maintained 
outwards through the apertures. The geometrical arrangement is illustrated in 
figures 1 and 2. 

We consider the reflection of plane waves of radian frequency o by the backed 
screen. Since the perturbations of the compressible fluid are linear and inviscid, far 
from the screen on the scale of the apertures the pressure perturbation is to be a plane 
wave solution of the wave equation and may be written as 

= ei[k,x,+k,z,-~tl[e-iklx~ + R  e i k l ~ l ] ,  (2.1) 

where R is the reflection coefficient of the backed screen, and k,, k,, k, are the 
components of the wavenumber in the 1,2,3 directions respectively. Between the 
perforated screen and the hard wall, the sound field may be written as 

[ A  e-ikizi +B eihzi], (2.2) p = ei[kzX,+k,X,-wtI 

where A and B are complex constants. 
Provided the aperture spacing is small in comparison with the wavelength and the 
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FIGURE 1 .  The geometry of the backed screen. 
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FIGURE 2. A square array of circular apertures. 

cavity depth 1 greatly exceeds the aperture radius the acoustic properties of the 
screen can be described by the smoothed boundary condition 

(2.3) 
3P - = 7 [ p ] : ; 2 :  on x1 = 0. 
3x1 

7, the effective compliance of the perforated screen, is simply related to the Rayleigh 
conductivity of an aperture. Howe ( 1979) determined the appropriate conductivity 
for circular apertures. In Howe's model an incident sound wave interacts with the 
mean bias flow to produce vorticity perturbations. The strength of the shed vorticity 
is determined from an application of the Kutta condition at  the edge of an aperture. 
This vorticity initially convects away from the aperture with speed U,  and ultimately 
decays into turbulence. For the square array of circles illustrated in figure 2, where 
the spacing between the apertures is d ,  we have the  effective compliance 

7 = 2ax/d2 ,  (2.4) 

where x is a function of the Strouhal number K a  = w a / U ;  we take U to be the mean 
velocity of the bias flow. 

From Howe (1979) x = y-is, (2.5) 
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where y and 6 are the real and positive functions 

I ;  sinh ( KU)  
~ ( K u )  1+-  +-eZKacosh(~u)K:(m) 

Y =  [ K:] ,“2 KU 

4 
712 

I;(KU)+-~’~~ cosh’ (KU)K:(KU) 

4 
~ ( K u )  +-eZKacoshZ (KU)K;(KU) 

712 

I ,@) and K,(z )  are modified Bessel functions. 
The boundary conditions of vanishing normal velocity at  x1 = -1 and continuity 

of normal velocity at z1 = 0, together with the linearized momentum equation, 
specify the sound field. We find that the reflection coefficient is given by 

(ik,/q) + 1 - (i/tan k, I) 
(ikJ7)- 1 - (i/tan k, I )  ‘ 

R =  

This result is valid for any thin compliant plate, which can be described by equation 
(2.3), in front of a rigid backing plane. 

The acoustic properties of the backed screen may also be described by the surface 
impedance Z which is defined to be the ratio of the surface pressure to the normal 
component of the surface velocity leading into the screen. This surface impedance is 
related to the reflection coefficient R through 

where po is the mean density, c the speed of sound and 8 is the angle between the 
direction of propagation of the sound wave and the l-axis. 

We are particularly interested in the absorptive properties of these backed 
perforated screens. The absorption coefficient is simply related to the reflection 
coefficient R through 

because no sound is transmitted beyond the rigid plane. 
On substituting the compliance q, given in (2.4), into (2.6), and rearranging the 

resulting expression, we obtain the reflection coefficient R for a plane backed screen 
with circular apertures, including the effects of vortex shedding : 

d = l-JR‘1, (2.8) 

(2.9) 

where k, = w / c  and k, = k,cosS. When there is no bias flow, x = 1. With the 
additional constraint k,lcosS 4 1, this expression reduces to that determined by 
Leppington & Levine (1973) ; the compactness condition was used in Appendix A of 
their paper. Leppington & Levine noted that the magnitude of their reflection 
coefficient is always unity : no sound energy is absorbed. With a bias flow through the 
holes, x is complex. Then IRI < 1 and acoustic energy is absorbed. The absorbed 
energy appears as virtually incompressible vortical motions produced by the 
interaction of the sound and the mean flow at the rims of the apertures. 

(ik,dacosS/2a~)+ 1-[i/tan (k,ZcosS)] 
(ik, d2 cos 8 / 2 q )  - 1 - [i/tan (k, I cos S ) ]  ’ 

R =  
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In elementary examinations of screech liners, where the backed screen is modelled 
as a bank of discrete Helmholtz resonators, it is assumed that a lining absorbs sound 
well at  the Helmholtz resonance frequency. We can now examine the absorption 
characteristics of a lining more clearly. 

Leppington & Levine pointed out that their backed screen reflects sound like a 
perfectly soft screen, that is, the reflection coefficient is - 1, when the wavenumber 
k, cos 8 satisfies the resonance condition 

k, cos 8 = (2a/zd2)4. (2.10) 

Rayleigh (1899) showed that the resonance frequency of a Helmholtz resonator, 
which consists of an acoustically compact rigid container of volume V, in which there 
is an aperture with a Rayleigh conductivity K ,  is determined by the relationship 

k, = (K/V0)t. (2.11) 

The Rayleigh conductivity of a circular aperture of radius a is 2a when there is no 
mean flow through the neck, and other dissipative mechanisms are ignored. The 
volume of each, imaginary, cell which makes up the backed screen is la2, and, for 
normally incident sound, cose = 1. Then the resonance condition for the backed 
screen is identical to the Helmholtz resonance condition, as expected. Equation 
(2.10) shows that the dependence of the resonance frequency on the angle of 
incidence of the sound takes a rather simple form. However, for large angles of 
incidence there is a significant difference between the resonance frequency predicted 
by assuming a cellular structure for the screen and that predicted by Leppington & 
Levine’s theory. 

In order to discuss our expression for the reflection coefficient, (2.9), which includes 
the effects of a mean flow through the apertures, it is useful to introduce a ‘resonance 
parameter ’ 

(2.12) 

proportional to the square of the frequency. Q is a convenient single-valued function 
of frequency which is unity at the modified Helmholtz resonance frequency given in 
(2.10). We can then rewrite (2.9) as 

Q = (k, d cos 8)2 1/2a, 

( Q / x )  - ik, 1 cos 8 - [k, 1 cos 8/tan (k, I cos 8)] 
( Q / x )  + ik, 1 COB 8- [k, 1 cos @/tan (k, I cos 8) ]  ‘ 

R =  (2.13) 

This result shows that the reflection coefficient, and consequently the amount of 
sound energy absorbed by the screen, is a function of three non-dimensional 
variables: the resonance parameter Q ,  the Helmholtz number ko1cos8, and the 
Strouhal number Ka.  One may expect from elementary Helmholtz resonator theory 
that the maximum sound absorption will occur near the modified Helmholtz 
resonance frequency, Q = 1. Any departure of the position of the maximum from 
Q = 1 arises as a consequence of the bias flow and cavity non-compactness. 

The absorption coefficient A = 1 - IR12 is plotted as a function of Q in figure 3 (a) 
with the Strouhal number K a  = 2, and in figure 3(b) with the Helmholtz number 
k, 1 cos 8 = 0.5. Perhaps the most striking feature of these plots is the efficiency of the 
backed screen as a sound absorber. For certain combinations of the dependent 
variables all the incident sound can be absorbed. However, the plots also show that 
designing a liner by merely choosing the resonance frequency, without consideration 
of the bias flow through the holes, does not guarantee a large absorption coefficient. 

Figure 3 reveals that, for small values of the Helmholtz number k, 1 cos 8, the peak 
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0 1 .o 2.0 
Resonance parameter, Q 

FIQURE 3. The absorption coefficient for a plane backed perforated screen with circular 
apertures as a function of the resonance parameter Q.  (a) K a  = 2, (b)  k0l cos0 = 0.5. 

absorption, at a particular Strouhal number, occurs close to Q = 1. As the Helmholtz 
number is increased, so the resonance parameter becomes less useful as an indicator 
of the position at which the peak absorption will occur. We have already noted that 
the Helmholtz resonance theory relies on the cavity volume being acoustically 
compact. The relevance of the resonance parameter also decreases as the Strouhal 
number tends to zero, since the bias flow is then large, x is significantly different from 
unity, and the resonance frequency shifts away from where Q = 1. If a sound- 
absorbent lining may be treated as planar, then the theory that we have presented 
in this paper may be used to design one that is highly absorptive. 

In figure 4, the absorption coefficient has been plotted as a function of Strouhal 
number for different values of the cavity Helmholtz number k,,lcos8, with the 
resonance parameter set equal to unity. Such a family of curves should be useful 
when choosing the geometry and mean flow velocity for a particular absorptive 
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0 2 4 6 8 10 
Strouhal number, KU 

FIQURE 4. The absorption coefficient for a plane backed perforated screen when the resonance 
parameter Q is unity. 

lining. For a given frequency, angle of incidence, and cavity depth, the parameter 
k,,lcosO is fixed. The appropriate Strouhal number, and hence bias flow velocity, at 
which the absorption coefficient is sufficiently large can then be read from figure 4. 

3. An experimental investigation of the acoustic properties of a plane 
backed perforated screen 

In theory, a backed perforated screen can absorb all of the sound that is incident 
upon it at  a particular frequency when there is a mean bias flow through the screen. 
In this section we present the results of the experimental investigation that we have 
carried out to test the theory. Garrison et al. (1969) did some experiments on the 
effect of a mean flow of air through a small plane section of a backed screen. 
However, that examination was limited to studying the way a mean flow could 
degrade the nonlinear absorptive properties of a liner. The absorptive properties of 
a screen in the presence of a bias flow of the type considered here has not previously 
been fully investigated experimentally. 

We used the version of the popular ‘impedance-tube’ technique developed by 
Seybert & Ross (1977) to test the theory presented in $2. The experimental 
apparatus is illustrated schematically in figure 5.  Two a in. microphones, connected 
to a digital spectrum analyser, were mounted flush with the inner surface of a 
cylindrical brass tube of 95.6 mm nominal inside diameter. Backed screens were built 
up out of a thin perforated plate with circular apertures and a solid brass block which 
incorporated a cavity of the same inside diameter as the brass tube. There were four 
air inlets into the cavity through which a steady, but adjustable, flow of air was 
supplied. These were securely belted on to the end of the brass tube. Spacers could 
be introduced between the perforated plate and the end block so that the cavity 
depth could be adjusted. At the other end of the tube, loudspeakers were mounted 
and connected to a noise source. The distance to the microphone nearest to the 
sample was just over 0.3 m. This positioning was a compromise between being close 



FIGURE 5. Schematic of the apparatus used for the experimental examination of the acoustic 
properties of a backed screen with circular apertures in the presence of a bias flow. 

enough to minimize the propagation loss between the sample and the microphone, 
and far enough to avoid the near field effects. The spacing between the microphones, 
set equal to 91 mm, was also a compromise, mainly between placing the microphones 
far enough apart for the estimate of the effective separation to be well approximated 
by the distance between the microphone centrelines, and close enough for the 
frequency a t  which the spacing is equal to the half-wavelength to be sufficiently high. 
When the spacing is equal to the half-wavelength, the equations determined by 
Seybert & Ross which relate the measured quantities to the plane waves travelling 
to the left and right are ill-conditioned. We chose the spacing so that the frequency 
at which this occurred was just below the cut-on frequency where higher-order 
modes, as well as plane waves, propagate in the duct. Reliable measurements were 
then limited to frequencies below approximately 1.8 kHz. 

Seybert & Ross showed that by measuring the auto- and cross-spectral densities 
a t  the two microphone positions when a sample is irradiated with white noise, in the 
frequency range appropriate for plane wave propagation, the acoustic properties of 
a simple impedance surface can be calculated. However, in the course of our 
theoretical analysis we neglected the linear contributions to the fluctuating flow in 
the apertures from the turbulence in the wake of the screen because they are of a 
different frequency to the incident harmonic sound. With white-noise excitation, this 
assumption is invalid. We therefore evaluated the response of the backed screen 
using discrete frequency excitation. 

We first checked that the measured quantities were independent of the sound 
pressure level over the range 85 dB to 140 dB. The sound pressure level was not kept 
constant for the measurements and typically varied over this range. For each set of 
data, we varied either the frequency or the mean velocity through the apertures. 
From the measurements, we calculated the absorption coefficient A ,  the phase 4 of 
the reflection coefficient, and the effective specific surface impedance 2 = Z/p,  c. We 
found that the conditions could be varied over an interesting range using just two 
perforated plates, one with 24 apertures of radius 1.5 mm spaced 17 mm apart, which 
corresponds to an open-area ratio v = 0.024 based on the aperture spacing, and 



308 

" 20 

9 
6 

1. J .  Hughee and A .  P .  Dowling 

I I I I I I I I I 

i (4 
j 

- 

- 

-$. 
1 1  I I I I 

'0: 
I: ... 

3 ; ""a 0.. - 
4 
," 0 -  I - 

........................ ----..___ ---___ 
h-11 m.aaamr.PP-- 

I I I I f I I I I 

another with 104, 1.5 mm radius apertures spaced 8 mm apart, corresponding to 
v = 0.11. The cavity depth was varied over the range 10-47.5 mm. The compactness 
condition k,d 4 1 was satisfied since the maximum value for k,d was 0.56. 

In $2 we showed that only three non-dimensional variables are necessary to 
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0 1 .o 2.0 
Resonance parameter, Q 

FIQURE 7. The Bame perforated plate as in figure 6 but with a cavity of double the depth: 
all  = 0.075, al/d2 = 0.1024. 

describe the acoustic properties. However, those variables are all frequency 
dependent. It is thus convenient to present the experimental results using the 
following four non-dimensional parameters : the resonance parameter &, which was 
introduced in $2 and is equal to kiZd2/2a for normally incident sound, the Mach 
number M ,  based on the mean flow velocity in the mouths of the apertures, and two 
parameters, al /d2  and all ,  which depend upon the geometry alone. The Mach 
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FIGURE 8. The same geometry as in figure 7 but with a different bias flow ; M = 0.086. 

number, M = U/c ,  is therefore simply related to  the Strouhal number KU = wa/U. In 
terms of the new parameters, the Strouhal number is given by 

KU = [2&(aZ/d2)]'(a/Z)M. (3.1) 

A representative set of experimental results is presented in figures 6-12. The 
theoretical properties are plotted for comparison. We have used equations (2.9) and 
(2.5) for the reflection coefficient, (2.8) for the absorption coefficient, and (2.7), 
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Resonance parameter, Q 

FIGURE 9. A different perforated plate. M = 0.052, all = 0.032, a l /d2  = 1.06. 

divided by po c ,  for the specific surface impedance. These results were obtained tsin 
the plate- with 24 apertures, except for figure 9. The agreement between the 
theoretical and experimental acoustic properties is very encouraging. In figures 6-9, 
A ,  $, and 2, are plotted as a function of the resonance parameter. We see from figure 
7 that the theoretical prediction of total sound absorption, a t  a particular frequency, 
can be attained in practice. When the parameters are altered to produce a less 
efficient sound absorber, the correlation between the theory and experiment is also 



312 I .  J .  Hughes and A .  P. Dowling 

I I I I 

I 

0 0.01 0.02 0.03 0.04 
Mach number, A4 

FIQURE 10. The acoustic properties of a plane backed perforated screen with circular apertures as 
a function of the Mazh number M when a/l  = 0.075, al/d2 = 0.1024, Q = 1.  The solid lines, and the 
dotted line for Im ( Z ) ,  were produced ufing the theory presented_ in $2. Measured values : (a)-@) 
filled squares, (c) filled squares for Re (Z), open squares for Im (2). 

rather good, as figures 8 and 9 reveal. I n  figures 10-12 the comparison between 
experiment and theory is shown as a function of the Mach number M .  Here the 
agreement is also notable, but the variation of the real part of the surface impedance, 
which is responsible for the energy absorption, appears to be less reliably predicted 
than the imaginary part. 
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0 0.01 0.02 0.03 0.04 
Mach number, M 

FIGURE 11 .  The same geometry as figure 10 but at a different frequency so that the resonance 
parameter Q = 0.043. 

There is much scope for error in the experimental results. We have already 
mentioned the sensitivity to error which arises when the microphone spacing is 
nearly equal to the half-wavelength of the sound. This accounts for scatter in the 
results at  the upper end of the range of Q in figures 6-9. Seybert & Ross also pointed 
out that errors are magnified when the phase (b of the reflection coefficient is small 
and this accounts for much of the scatter in the results presented here, particularly 
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FIGURE 12. The same perforated plate as in figure 10 except but with a cavity of half the 
depth and at a different frequency. all = 0.15, a l /d2  = 0.052, Q = 0.33. 

in figure 10. Other sources of error include the non-uniformities in the perforated 
plates, the fact that the plates have a finite thickness, and problems associated with 
the method of providing a steady mean flow through the apertures. Seybert & 
Soenarko (1981) and Bod& & Abom (1986) discuss other sources of error inherent in 
the experimental method. However, we content ourselves with the indication that 



The absorption of sound by perforated linings 315 

the theory presented in this paper predicts the acoustic properties of a plane backed 
perforated screen rather well despite these sources of error. 

4. The scattering of sound inside a cylinder lined with a perforated sheet 
A screech liner is cylindrical. In this section we examine the effects of curvature on 

the absorptive properties of a perforated lining. We consider the geometry depicted 
in figure 13. A rigid cylinder of unlimited length is lined with a thin, but rigid, 
perforated sheet. The perforations are an acoustically compact distribution of small 
circular apertures and a mean flow, of the type already considered, is directed 
radially inwards ; further limitations on the size of the apertures are discussed later. 
A cylindrical polar coordinate system ( r ,$ ,z )  is centred on the axis of this lined 
cylinder. 

Screech is thought to be the excitation of a transverse acoustic resonance in a duct. 
These resonances are associated with standing wave patterns which arise as a 
consequence of constructive interference between travelling waves ; the wavelength 
is of the same order of magnitude as the duct radius. We wish to examine the 
effectiveness of a perforated lining in suppressing screeching combustion. We shall 
consider the sound field to  consist of a linear combination of Hankel functions, H,. 
All components of the sound field are then proportional to exp [ -i(wt-kk,z-n#)], 
where kz is the wavenumber in the z-direction. This factor is suppressed in the 
following analysis. 

We have already mentioned that the compliance of a perforated screen is simply 
related to the Rayleigh conductivity of a single aperture in a rigid baffle. The 
relationship between these quantities is derived by smearing the perturbation 
velocity distribution over the surface to give a continuous velocity distribution. This 
procedure is valid because the sound is insensitive to the local detail on the surface. 
If the perforated lining is approximately plane within a distance from the aperture 
that is large in proportion to the aperture dimension, then the Rayleigh conductivity, 
and hence the compliance, should be insignificantly affected by the curvature, 
Rayleigh (1945, $306)) in his discussion of the concept of an aperture’s conductivity, 
noted that this constraint on the use of the conductivity should be sufficient. 

In our cylindrical coordinate system the compliance relationship is 

We shall find it useful to introduce a reflection coefficient R for this lined infinite 
cylinder since this is simply related to the absorption coefficient A through 

A = I -)R12. (4.2) 

The sound pressure p in the region ro < r < r l ,  which is exterior to the region 
containing a source of sound ( r  < ro) ,  may then be written in the form 

p = A[Hg’(yr)  + RHF’(yr)], (4.3) 
where y = (ki- k,2)$ and A is a constant. At  this stage we are not concerned with what 
happens in the source region. In the cavity between the perforated lining and the 
rigid cylinder, rl < r < rl, 

(4.4) p = BHg)(yr) + CH?)(yr), 

where B and C are constants. The constants A ,  B and C in (4.3) and (4.4) are 

11 FLM 218 



316 I .  J .  Hughee and A .  P. Dourling 

FIGURE 13. The geometry of the lined cylinder. 

eliminated by applying the boundary conditions of vanishing normal velocity a t  r = 
r2, the compliance relationship (4.1), and continuity of normal velocity at r = r l ;  the 
latter condition is implicit in the compliance relationship. 

We then find that, in terms of the compliance 7, 

where the prime denotes differentiation with respect to the argument and we have 
introduced the following shorthand notation : 

As with the plane liner, the acoustic properties of the lined cylinder may be described 
by the surface impedance 2, which for this geometry is given by 

on r = r,. 8P 
p=iwp , r  (4.7) 

We find that this impedance is related to the reflection coefficient by the expression 

When the radius of the perforated lining becomes large in comparison with the 
wavelength, we expect the reflection coefficient in (4.5) to bear a simple relationship 
to the plane wave reflection coefficient presented in $2. On replacing the Hankel 
functions in (4.5) by their asymptotic forms, we find that as yr, -+ 00 

[iy/r + 1 - i/tan yZ] 
[iy/q - 1 - i/tan yZ] ’ R - exp [2i(yr, - !pr --in)] (4.9) 

where here 1 = rz-rl. The radial wavenumber, y ,  is equivalent to the wavenumber 
k, which appears in the expression (2.6) for the reflection coefficient of a plane backed 
screen, and we see that these results only differ by the exponential function which 
premultiplies equation (4.9). This function affects only the phase of R, and appears 
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FIQURE 14. The absorption coefficient for a cylindrical liner within a rigid cylinder expressed as a 
function of the Helmholtz number yr ,  when Q = 1, ~a = 2, yl = 0.5. The curves are for sound fields 
with different azimuthal variation. 

because the definition of the reflection coefficient in (4.3) is slightly different from 
that in (2 .1) .  

Before moving on to examine the absorptive properties of a cylindrical perforated 
lining we note that (4.5) can be rearranged into a form where the Wronskian 

(4.10) 

(Abramowitz & Stegun 1965) appears. We then obtain an alternative form for the 
reflection coefficient : 

(4.11) 

The effective compliance r ]  of a screen with circular apertures, through which a 
steady mean flow is forced, was given in (2.4) and (2.5). On substituting this 
compliance for 7 in equation (4.11) we obtain the reflection coefficient R for a 
cylindrical liner with circular apertures : 

(4.12) 

where the function x, which was defined in (2.5), accounts for the influence of the 
vortex shedding. On comparing this expression with that given for the reflection 
coefficient of a plane backed liner, given in (2.12) and (2.13), we see that we have only 
introduced two new non-dimensional parameters : the Helmholtz number yr, of the 
liner radius, and the azimuthal variation parameter n. As we have already 
mentioned, the radial component y of the wavenumber k, plays the same role for the 
cylindrical liner as the normal component k, cos 8 does for the plane liner. Therefore 
the resonance parameter Q which we defined in $2 for a plane liner appears in this 

[4ibZ/{xrl(a -/I) HF)'(yrl) H:)'(yr,)} + y 2 Z d 2 / 2 a ~ ]  
4il/{ xr,  (a - p) [H~z)'(yrl)]2} + y22d 2/2ux 

R = - u  ' 

expression ; 
Q = y21d2/2a. (4.13) 

11-2 
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For the plane liner, we saw that when the cavity is acoustically compact this 
resonance parameter is nearly unity at the position of peak absorption coefficient 
when the frequency or mean flow is varied. 

We can now examine the influence of curvature on the absorptive properties of a 
perforated lining in a duct by choosing a surface perforation geometry and bias-flow 
Strouhal number, then comparing the absorption coefficient of the cylindrical liner 
with that of a plane liner as the radius of the cylinder is varied. For a plane backed 
screen, we showed in figure 3 that when the cavity-depth Helmholtz number is 0.5, 
total sound absorption occurs near Q = 1, ~a = 2. In  figure 14, the dependence of the 
absorption coefficient d = 1 - IRI2 upon the Helmholtz number yrl of the liner radius 
is illustrated. 

When there is no azimuthal variation ( n  = 0) ,  the absorption coefficient does not 
fall below unity until the Helmholtz number yr, is very small. Consequently, when 
n = 0, a highly absorptive screech liner could be designed by assuming the liner to 
be a plane since in a jet pipe the radius of the liner greatly exceeds the cavity depth. 
However, as the azimuthal variation increases, so does the scale of the cylinder for 
which the liner may be assumed to be effectively plane. 

There is some practical evidence to  suggest that  the azimuthal variation associated 
with screech is small. Therefore, our results show that a highly sound-absorbent 
screech liner could probably be designed by assuming the liner to be plane. In the 
next section, we examine how a source of sound radiates within a lined cylinder, in 
order to gain more insight into the effect of a liner on the sound field within the 
cylinder. 

4.1. The radiation from a sowrce within a lined cylinder 
We have seen that perforated plates can offer large absorption a t  a particular 
frequency when a suitable combination of perforation geometry and bias-flow 
Strouhal number is chosen. Screech liners are usually designed by matching the 
Helmholtz resonance frequency of the liner to  the expected screech frequency. The 
screech frequency is usually taken t o  be that associated with a resonance mode in an 
unlined rigid duct. However, when a liner is inserted, the boundary condition 
changes, and the resonance frequencies are altered. We can gain a useful idea of how 
the acoustical environment is altered when a liner is inserted by examining how a 
source radiates in this environment. 

The sound field G(r I ro) produced by a point source at r,, and transmitted to  an 
observation point r ,  is described by the following inhomogeneous Helmholtz 
equation : 

(Vz++:)G(rIro)  = 8(r-ro) .  (4.14) 

The Fourier transform of this expression, according to the definition 

c ( r ,  n, +, I ro) = Irn Ln G(r I ro) exp [ - i(k, z+ %#)I d# dz, (4.15) 
-m 

Since we require the solution to  be finite on the cylinder axis, 

6 = AJn(,(yr) in o < T~ < r,  (4.17) 

where A is a constant. For the region between the source and the lined wall, we write 

d = B[Ht ) (y r )  + ~ ~ g ) ( y r ) l ,  (4.18) 
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where B is a constant and R is the reflection coefficient of the lined cylinder which was 
given in (4.11). 

The boundary conditions, from which we can determine the constants A and B, are 
obtained by integrating equation (4.16). We find that (? is continuous through the 
source at r = ro and the gradient of d is discontinuous: 

(4.19) 

On applying these conditions to the solutions (4.17) and (4.18) we obtain the sound 

d = 71: YJ,(yro) exp - i(k, zo + n+o)~/2i, (4.20) 

where Y = [Hg)(yr)+RH:)(yr)]/(l -R) (4.21) 

describes how a source radiates sound within the lined cylinder ; the remaining terms 
in (4.20) depend solely on the structure of the source. 

In terms of the surface impedance 2, whose relationship with the reflection 
coefficient is shown in (4.8), the radiation function Y becomes 

field d due to the source a t  r = r o :  

Y =  
iwp,[H:)(yr,) H$)(yr) --H:)(yr) H$)(yrl)] + yZ[Hg)(yr)  H:)’(yrl) - Hg)’(yrl) H$)(yr)] 

2[YzJ;(Yr,) -iwPoJ,(Yr,)l 
(4.22) 

On the wall of the liner at  r = rl this function may be simplified. The first term in the 
numerator vanishes and the second is a function of the Wronskian which we 
encountered earlier, in (4.10). Thus 

(4.23) 

With the function Y cast in this form we can see that when the magnitude of the 
surface impedance is large enough, the denominator is dominated by the first term. 
When 2-t co, the sound pressure on the surface of the lining is unbounded if the 
function JS(yrl) vanishes. The surface impedance of a rigid liner with no apertures 
is infinite, and the modes of oscillation for which Jn(yrl) vanishes are then the 
resonance modes. 

Screeching combustion is usually detected in engine tests by monitoring the sound 
pressure level near the wall of the jet pipe. The effect of a perforated liner on the 
surface sound pressure level can be assessed by plotting 

(4.24) 

against the Helmholtz number yr, of the liner radius. In particular, for a given radius 
r l ,  the positions of peaks in this function correspond to wavenumbers at which a 
source can radiate more effectively causing large pressure fluctuations at  the wall of 
the jet pipe; the absolute level of S is unimportant. 

The non-dimensional parameters which we adopted in the previous section are : the 
resonance parameter &, the Strouhal number KU, the cavity-depth Helmholtz 
number yl, the liner-radius Helmholtz number yrl, and the azimuthal variation 
parameter n. We want to examine the sound field as a function of yr l  for a particular 
liner, and so i t  is appropriate to replace Q ,  yl and Ka by the following frequency- 
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FIQURE 15. The variation of the function S when no absorption mechanism is present. Solid line, 
perforated lining; dashed line, unperforated (rigid) lining. n = 0, l / r ,  = 0.05, all = 0.25, al/d2 = 
0.045, kJk0 = 0. The resonance parameter is equal to unity for the perforated liner at  yr, = 6. 

independent parameters: the Mach number M ,  based on the mean velocity in the 
mouths of the apertures, the geometrical parameters Z/r,, ail, and aE/d2, and the 
wavenumber ratio k, /k , .  These two sets of non-dimensional parameters have the 
interrelation 

In figure 15, the form of S is illustrated for a perforated liner with a resonance near 
yr, = 6 when no sound absorption mechanism is included; that is, when the Rayleigh 
conductivity of the aperture is real and equal to twice the aperture radius. The 
dashed line in the figure shows the form of S when the liner is unperforated. 
Perforating the liner shifts the positions of the peaks and introduces a new peak 
because the liner itself has a resonant response. Using a perforated lining which offers 
little damping could therefore produce an engine which is more prone to screech. If 
there is no variation in the sound field along the duct, k,/ko = 0, and therefore y = 
k,. Typically, for an engine, r1 k 0.4 m and c x 440 m/s, near the liner. Therefore the 
range of yr ,  plotted corresponds to a frequency range of up to about 1.8 kHz; a 
typical screech frequency is around 1.3 kHz. For this liner, the plane backed screen 
theory in $2 suggests that we should have K a  = 3.4 for high absorption at resonance. 
Therefore, since kJk0 = 0, the Mach number of the bias flow should be approximately 
0.022 for large absorption near yrl = 6. The effect of such a mean flow is shown in 
figure 16. The peaks in the spectrum are now finite, and the height of the peak near 
yr ,  = 6 is much reduced. 

By altering the surface geometry and the mean bias flow velocity we can adjust the 
Helmholtz number yr ,  at which the peak absorption occurs. The absorption 
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FIQURE 16. (a)  The absorption coefficient, and (b )  the function S, for a lined cylinder when sound 
is absorbed by vortex shedding. The source of sound and the geometry of the perforated liner are 
the same as that in figure 15 with M = 0.022. 

coefficient curves for a plane liner can be used to choose the appropriate mean 
velocity for large absorption. In figures 17 and 18 we show how the function S is 
affected when the peak absorption is designed to occur near yr ,  = 4 and 8 
respectively. We see that the absorption curve is broader in the latter plot; 
significant absorption occurs over a larger range of yr,. 

Figures 16-18 show that, when there is no azimuthal variation of the sound source, 
a range of yr, over which the sound pressure level is reasonably uniform could be 
produced in our lined cylinder. In figures 19-21 we illustrate the way in which the 
absorptive property of a liner and the surface pressure function S are affected by 
azimuthal variation in the sound field; n = 1, 2, and 3, respectively. The geometry 
and flow conditions are the same as those in figure 18. The dotted lines show the form 
of S when the liner is unperforated. The range yr, over which the sound pressure level 
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FIQURE 17. The effect of varying the resonance frequency of a perforated liner by altering the 
surface geometry and bias flow; all# = 0.02, M = 0.01. The resonance parameter is equal to unity 
at yr ,  = 4. The source of sound is the same as in figure 16. 

does not have large peaks is shifted to higher values of yr l .  However, as we have 
already mentioned, rapid azimuthal variation is unlikely in practice. 

We conclude that a scheme for designing a liner where the effect of a particular 
liner on the sound field is examined may be more reliable than simply matching the 
Helmholtz resonance frequency to a screech frequency in an unlined duct. 

4.2. The effect of a velocity and temperature discontinuity 
In this section we present a simple extension to the preceding analysis with the aim 
of illustrating how the acoustic properties of a liner are likely to be affected by the 
mean flow of hot gas in the jet pipe. This axial mean flow is of finite, subsonic Mach 
number and is separated from the liner by a layer of cool air which is produced by 
blowing air through the perforations in the liner ; we have already stressed the crucial 
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FIQURE 18. As figure 17 except for the surface geometry and bias flow; a l /d2  = 0.08, 
M = 0.039. The resonance parameter is equal to unity a t  yr, = 8. 

role of this bias flow. An idealized model of this situation is illustrated in figure 22. 
We assume that the thickness of the mixing region is small in comparison with the 
acoustic wavelength so that we can treat the variation in the axial velocity and 
temperature as a discontinuity. The mean velocity of the cool air is negligible except 
in the mouths of the apertures, where we assume that the flow is of the type that we 
have considered in the previous sections. The Rayleigh conductivity of the apertures 
which Howe (1979) determined then describes the scattering properties of the 
apertures if the presence of the velocity and temperature discontinuity can be 
ignored when describing the local aperture flow. Consequently, in the region beneath 
the discontinuity, the reflection coefficient of the cylindrical liner is assumed to be the 
same as that derived in (4.12). 

This simple model should be appropriate provided that the thickness of the layer 
of cool air is large in comparison to  the scale of the apertures ; in practice, this is likely 
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FIQURE 19. The effect of azimuthal variation in the sound field : n = 1.  The geometry and bias flow 
are the same as in figure 18. The dashed line shows the form of the function S when the liner is 
unperforated. 

-20 I 

to be true. The limit imposed on the validity of the model by this thickness arises 
because of the influence on the aperture flow of the vorticity which is shed from the 
aperture rims. If the layer of cool air is thin, then the interaction of the aperture 
wakes with the hot mean flow may be important. The scale on which to measure the 
thickness of the layer is the vorticity lengthscale 2nUlw = 2 n a / ~ a ,  where U is the 
vorticity convection velocity and Ka is the Strouhal number based on the aperture 
radius. When the Strouhal number is large, the sign of the vorticity changes over a 
small distance and so only the vorticity in the immediate vicinity of the aperture has 
a significant influence on the flow in the aperture. However, when the Strouhal 
number is small, vorticity of one sign is stretched over a large distance and vorticity 
many aperture diameters downstream can influence the aperture flow (Howe 1979). 
In the latter situation, one may expect the interaction between the aperture 
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FIGURE 20. As figure 19 but for n = 2. 

wakes and the velocity and temperature discontinuity to be important. When this is 
so, the model presented here may be of limited validity; although in support of our 
model we note that when the Strouhal number is small, the velocity of the flow 
through the apertures is large and the layer of cool air would be thicker than when 
the Strouhal number is large. 

As in the previous sections, we shall represent the sound field in the duct as a linear 
combination of Hankel functions. The frequency measured in a frame which moves 
with the flow velocity U, is w,. This is related to the frequency w in a stationary frame 

(4.25) 
through 

(Morse & Ingard 1968), where k, is the axial wavenumber. If we define 8 as the angle 
between the normal to the wavefronts and the axial mean flow, then 

k, = k, cos 0, (4.26) 

w = w,+k,U,  
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FIGURE 21. As figure 19 but for n = 3. 

where k, = w,/c, and we obtain the familiar relationship 

w = 0,(l+M,cos0), (4.27) 

M ,  = Uv/c,  is the Mach number of the axial mean flow. The term (1 +Mu cos 0) is 
commonly referred to as the Doppler factor. 

In  the region ro < r < r,, exterior to a source region r < T o ,  we write the sound 
pressure p as 

where 

(4.28) 

(4.29) 

is the radial wavenumber. We have also introduced the reflection coefficient R, of the 
whole region r > rv which we shall determine in terms of the properties of the fluid 
and the reflection coefficient of the liner. We shall then be able to examine how sound 
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produced in the moving flow is absorbed by the combination of a cool layer and a 
perforated liner. The absorption coefficient A ,  is the fraction of sound incident upon 
the surface r = r, that is absorbed. It is simply related to R, through 

A ,  = 1 - lBv12. (4.30) 

This expression is of the form considered in previous sections ; the presence of the 
axial mean flow does not affect the form of the absorption coefficient even though 
sound energy is convected by the flow. 

In the cool, stationary layer within re < r < rlr the sound field is given by 

p = AIHL1)(yr) +RH‘,)(yr)], (4.31) 

where the radial wavenumber, y ,  is equal to (w2/c2 - ki)a. When this relationship is 
combined with (4.26), we obtain 

y2 = w”c2 - w: 0052 0 / c ; .  (4.32) 

Equations (4.27) and (4.29) may be used to rearrange (4.32) to show that y is related 
to Yv by 

y=- cv yv  [( 1 +M* cos @)2- (c/cv)2cos2 691% (4.33) 
c sin 0 

The reflection coefficient R, is now determined by applying the appropriate 
boundary conditions for the velocity and temperature discontinuity : the sound 
pressure p and particle displacement E are both continuous across r = r,. In r < r,, 
the displacement E[ is related to the pressure gradient in the convected form of the 
linearized momentum equation 

Ur,U r ’ 1 

“r’ POCTO 

ALL 
I 

1 

(4.34) 

c- 

T 

In the cool, stationary layer the equivalent relationship is simply 

(4.35) 
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On applying the boundary conditions, and using (4.26) and (4.27), we obtain 
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(4.36) 

This rather unwieldy expression simplifies in the limit of large Helmholtz number 
yv 7,. Some of the important features can then be examined more clearly. On replacing 
the Hankel functions and the reflection coefficient R by their asymptotic forms (see 
(4.9)) we obtain 

R, - exp [2i(y,r,-@n-$)] 

i( 1 +Mu cos @)2 [ y / y  - l/tan yl+ tan yh] - [tan (yh) (y /q  - l / tan yl)  - 13 
X 

i(l+M,cos@)* [y/q-  l/tanyl+tanyh]+ --c [tan(yh) ( y / q -  l/tanyl)- 13 
( Z P J  

(4.37) 

where h = r l - r v  is the thickness of the cool layer above the screen, and q is the 
effective compliance of a plane perforated screen. For a screen with circular apertures 
this compliance was given in (2.4). As with the asymptotic form of the reflection 
coefficient for the cylindrical liner with a homogeneous, quiescent fluid inside the 
cylinder, the curvature of the liner does not affect the magnitude of R, in this limit. 

When y is real, no sound is absorbed by the screen, and we have the resonance 

(1 +M, cos 0)2 [ y / q  - l / tan y l+  tan yh] = 0. (4.38) condition 

When this condition is satisfied, the reflection coefficient IRJ = 1, and the surface at  
r = r, appears to be perfectly soft to sound waves incident upon it from r < r,. We 
are not concerned with the relatively trivial solution M, cos 0 = - 1. The remaining 
expression reveals that it is only the thickness h of the cool layer above the liner 
which affects the condition for resonance; when the cool layer above the liner is 
vanishingly thin, the resonance condition of a plane liner in the absence of the 
temperature discontinuity is recovered. Intuitively, this result seems reasonable 
because the discontinuity reflects sound, and standing waves can therefore be set up 
in the region r, < r < rl  in much the same way as the standing waves in the cavity 
are set up, and it is the existence of standing waves which leads to the resonant 
behaviour. 

The analogue Q, of the resonance parameter Q which we used in the previous 
sections is then 

when the cavity depth is sufficiently compact for tan yl x yl. In practice it is likely 
that yh will be small, then tan y h  could also be replaced by its argument. We expect 
that when yr, is sufficiently large, then the peak absorption for given geometry and 
flow conditions should occur near Q, = 1. 

The presence of the discontinuity leads to the introduction of the following non- 
dimensional parameters : the impedance ratio pv cv/po c ,  the Helmholtz number yh of 
the cool layer, the sound speed ratio CIC,, the propagation direction 0, and the 
component M, cos 8 of the Mach number in the propagation direction. 

In figure 23 we illustrate the absorption coefficient A,,  as given by (4.30), (4.36), 

Q, = yl(yd2/2a + tan yh) = Q + yl tan yh, (4.39) 
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FIGURE 23. The absorption coefficient for a lined cylinder in the presence of a velocity and 
temperature discontinuity expressed as a function of the Helmholtz number yvr,. &, = 1 ,  K a  = 3.2, 
yl = 0.37, yh = 0.2, pvcv/poc = 0 . 8 , 8  = in. The curves are for sound fields with different azimuthal 
variation. 

and (4.12), as a function of the Helmholtz number yvr ,  when the resonance 
parameter Q, is set equal to unity. This figure has a similar form to figure 14, and 
shows that, for small azimuthal variation, the absorption coefficient rises quickly to 
the value predicted by assuming the liner to be planar, which in this case is unity. 
All the sound can still be absorbed when the temperature and velocity discontinuity 
is present. The simple procedure for designing an absorptive liner by assuming it to 
be planar and then examining the sound field inside the cylinder with the chosen liner 
should still be appropriate. 

In figures 24 (a) and 24 (b ) ,  the absorption coefficient for an effectively plane liner 
is plotted as a function of the Strouhal number K a  based on the mean velocity in the 
mouth of the apertures (which is approximately equal to the vorticity convection 
velocity). We have set the resonance parameter Qv = 1,  yl = 0.37, n = 0 and 0 = in 
(so that Doppler effects are excluded here). In figure 24(a), the impedance ratio 
p, c,/p,, cis varied and yh = 0.2. In figure 24 ( b ) ,  the Helmholtz number of the cool layer 
is varied while p,c,/poc = 0.8. The absorptive properties appear to be relatively 
insensitive to the thickness of the cool layer. This is rather fortunate because this 
length is arguably one of the more difficult parameters to estimate. Figures of this 
type could be used when choosing the geometry and bias flow for a particular liner 
when the discontinuity is significant, in much the same way as we used figure 4 to 
design a liner when the discontinuity was absent. 

A similar procedure to that followed in $4.1 may now be used to examine the effect 
of the hot mean axial flow on the radiation from a source of sound in a lined duct. 
Referring to (4.21) we see that, on r = r,, the function Y which describes the 
environment into which the source radiates becomes 

(4.40) 
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FIGURE 24. The absorption coefficient as a function of the Strouhal number KU for an effectively 
plane liner. &, = 1, yl = 0.37, n = 0,  0 = ;x ,  c/c, = 0.62. (a )  yh  = 0.2, ( b )  pucv/poC = 0.8. 

However, it is more sensible to examine the surface pressure on r = rl, and there we 
find that the sound field d is related to the source and surface properties through 

(4.42) 

where R is the reflection coefficient of the perforated liner in the absence of the 
discontinuity, and is given in (4.12). We introduce the function S,  which describes 
the sound pressure level on the surface produced by the source: 

(4.42) 

We now examine this function for a set of parameters typical for a real engine. We 
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FIGURE 25. (a) The absorption coefficient, and ( b )  the function S,, for a lined cylinder in the 
presence of a velocity and temperature discontinuity as a function of frequency. a = 5 mm, 1 = 
20 mm, d = 37 mm, U = 12.8 m/s, rl = 0.4 m, n = 0, 8 = in, h = 10 mm, T, = 1300 K, = 500 K, 
POlP" = 2. 

assume that the ratio of the specific heat capacities c p / c ,  = 1.33, and the gas constant 
R = 287 kJ/kgK, for both the hot and cool streams. We take rl = 0.4 m, I = 0.02 m, 
T, = 1300 K, T, = 500 K, h = 0.01 m, po/pv = 2 (therefore pvcv/poc = 0.8). Also, for 
the purpose of choosing the geometry and flow through the liner so that all the sound 
around the frequency 1.3 kHz is absorbed, the liner is assumed to be plane, n = 0, 
and 8 = in. The resonance parameter &, = 1 when a = 0.005 m and d = 0.037 m. At  
1.3 kHz, yl = 0.37, so from figures 24(a) and 24(b) we see that A ,  x 1 near KU = 3.2. 
This implies that we should set the mean flow velocity in the mouths of the apertures 
equal to 12.8 m/s. 

The absorption coefficient is plotted as a function of frequency in figure 25 (a )  when 
n = 0. The liner is then effectively plane over practically all the frequency range. The 
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in figure 26 except (a )  n = 1, ( b )  n = 2. 

corresponding form of the surface pressure function S,, given in (4.42), is illustrated 
in figure 25(b). The peaks in the spectrum are relatively small and the liner thus 
appears to be quite effective. In figures 26 and 27 (a) the effect of azimuthal variation 
in the sound field is illustrated. The liner then performs less well. However, as we 
have already noted, it is suspected that the azimuthal variation is small in practice. 
In  the last of this set of figures, figure 27 ( b ) ,  8 = 0.89$ rad. The mean axial flow then 
affects the results, and we have set U, = 140 m/s (M, = 0.2). Comparing this plot with 
figure 25(b) ,  we see that perhaps the most striking feature is the difference between 
the curves above about 1.6 kHz; in figure 27 (b)  S, decreases quite rapidly above this 
frequency. There is little or no experimental data available on the value of 0, but it 
is usually assumed that the waves are normally incident; 0 = in. 

In this section we have shown, by way of an elementary analysis, that the presence 
of a temperature and velocity discontinuity affects the criteria for designing a liner. 

FIQURE 26. The effect of azimuthal variation in the sound field. The conditions are the same as 
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FIGURE 27. The effect of azimuthal variation and axial variation in the sound field. The conditions 
are the same as in figure 25 except that (a) n = 3, ( b )  n = 0, 0 = O.SSin, Mu = 0.2. 

A highly absorptive liner may still be designed. We conclude that the peaks in the 
pressure near the wall of an unlined duct may be greatly reduced by such a liner over 
a useful frequency range. In theory a liner may be designed so that, over a range of 
frequencies at which a reheat flame is thought to be susceptible to screech, the sound 
pressure near the surface remains acceptably close to the background noise level. 

5. Conclusions 
We have shown that perforated liners with a bias flow through the apertures can 

absorb sound very effectively. At a particular frequency all the incident sound may 
be absorbed. If properly designed, such liners may suppress over a useful frequency 
range the peaks in the sound pressure spectrum which occur in those jet engines that 
use afterburners. The mean bias flow of cooling air through these liners plays a 
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crucial role in the absorption mechanism; the maximum absorption which a 
particular liner can offer is determined by the Strouhal number based on the aperture 
dimension. 

We first examined the absorptive properties of plane liners with circular apertures. 
Experimental results have been presented which show encouraging agreement with 
our theoretical model. A screech liner is cylindrical. We have investigated the effects 
of curvature on the absorptive properties of a liner and shown that a highly 
absorptive liner can be designed by assuming that it is planar provided that the 
azimuthal variation in the sound field is small. The radiation from a source of sound 
within a lined cylinder is modified by the surface properties and so the frequencies 
a t  which an engine may screech are likely to be altered. We have examined the 
surface pressure fluctuations produced by a source within a lined cylinder and the 
results give a useful insight into the effectiveness of a particular liner. Such an 
examination may well lead to a more appropriate liner design than the usual 
procedure whereby the Helmholtz resonance frequency of a liner is simply matched 
to the frequency at  which screech occurs in an unlined engine. 

The hot, axial jet flow affects the acoustic properties of a liner: the frequency at 
which maximum sound absorption occurs is a function of the properties of both the 
hot gas and the cooling air. In  $4.2 we presented a simple extension to the preceding 
theory and gave modified cri tsia for designing an effective liner. 

The work described here was carried out while one author (I. J .H. )  was in receipt 
of an SERC studentship. We should like to  thank Mr Roy Carter who built the 
apparatus for the experimental work. 
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